Profile Photo

Burcu Gurkan

Professor, Chemical Engineering
Designs and studies ionic liquid and eutectic solvents for applications in separations, carbon dioxide capture and electrochemical conversion, and energy storage
Office: 145 A.W. Smith
Phone Number: (216) 368-4182


Postdoc, Polymer Engineering, University of Akron, 2015
Postdoc, Chemical Engineering, Massachusetts Institute of Technology, 2013
Ph.D., Chemical Engineering, University of Notre Dame, 2011
B.S., Chemical Engineering, Middle East Technical University, 2004

Awards and Recognitions

2022, CSE Research Award, Case School of Engineering
2021, NSF CAREER, National Science Foundation
2021, Scialog Fellow: Negative Emissions Science, Science Corporation of Scientific Advancement and Alfred Sloan Foundation
2020, CSE Research Award, CWRU
2019, 2019 Class of Influential Researchers, American Chemical Society, Industrial and Engineering Chemistry Research
2019, American Chemical Society Petroleum Research Fund - Doctoral New Investigator, ACS-PRF
2018, NASA Early Career Faculty, NASA
2017, Nord Grant, Case Western Reserve University

Research Interests

Ionic Liquids, Electrode-electrolyte interfaces, molecular modeling, energy conversion and storage, CO2 capture & conversion

Teaching Interests

Electrochemical Energy Storage, Thermodynamics, Reaction Engineering

Professional Leadership and Service

Friday, January 1, 2016 - PRESENT, member Electrochemical Society
Friday, January 1, 2021 - PRESENT, member Materials Research Society
Tuesday, January 1, 2013 - PRESENT, 2024 Programming Chair of Energy & Fuels American Chemical Society
Saturday, January 1, 2011 - PRESENT, Past Chair of Transport and Energy Processes Division American Institute of Chemical Engineers
Thursday, June 1, 2023 - PRESENT, International Electrochemical Society


Zeeshan, M., Kidder, M., Pentzer, E., Getman, R., & Gurkan, B. (2023). Direct Air Capture of CO2: From Insights into the Current and Emerging Approaches to Future Opportunities. Frontiers in Sustainability, 4 (1167713).
DOI: 10.3389/frsus.2023.1167713
Dongare, S., Coskun, O., Cagli, E., Lee, K., Rao, G., Britt, D., ... Gurkan, B. (2023). A bifunctional ionic liquid for capture and electrochemical conversion of CO2 to CO over silver. ACS Catalysis, 13 (12), 7812 - 7821.
DOI: 10.1021/acscatal.3c01538
Lee, Y., Cagli, E., Klemm, A., Park, Y., Wickramasinghe, N., Dikki, R., ... Gurkan, B. (2023). Microwave regeneration and thermal and oxidative stability of imidazolium cyanopyrrolide ionic liquid for direct air capture of carbon dioxide. ChemSusChem, e202300118 ().
DOI: 10.1002/cssc.202300118
Klemm, A., Vichhio, S., Bhattacharjee, S., Cagli, E., Park, Y., Zeeshan, M., ... Gurkan, B. (2023). Impact of hydrogen bonding on CO2 binding to choline amino acids in ethylene glycol: An experimental and computational study towards sorbent design for direct air capture. ACS Sustainable Chemistry & Engineering, 11 (9), 3740 - 3749.
DOI: 10.1021/acssuschemeng.2c06767
Ghahremani, R., Dean, W., Sinclair, N., Shen, X., Starvaggi, N., Alfurayi, I., ... Gurkan, B. (2022). A redox-active eutectic solvent with viologen and ferrocene derivatives for redox flow batteries. ACS Applied Materials & Interfaces, 15 (1), 1148 - 1156.
DOI: 10.1021/acsami.2c18546
Lee, Y., Wickramasinghe, N., Dikki, R., Jan, D., & Gurkan, B. (2022). Facilitated Transport Membrane with Functionalized Ionic Liquid Carriers for CO2/N2, CO2/O2, and CO2/Air Separations. Nanoscale, 14 (35), 12638 - 12650.
DOI: 10.1039/D2NR03214G
Dean, W., Penley, D., Lee, Y., Ghahremani, R., Dongare, S., & Gurkan, B. (2022). Anion effects on the interfacial structure and bulk physical properties in choline-based hydrogen-bonded electrolytes. Journal of Physical Chemistry C, 126 (34), 14598 - 14610.
DOI: 10.1021/acs.jpcc.2c01901
Zhang, Y., Klein, J., Akolkar, R. N., Gurkan, B., & Maginn, E. (2022). Solvation Structure, Dynamics and Charge Transfer Kinetics of Cu2+ and Cu+ in Choline Chloride Ethylene Glycol Electrolytes. The Journal of Physical Chemistry C, 126 (34), 6493 - 6499.
DOI: 10.1021/acs.jpcb.2c04798
Penley, D., Wang, X., Lee, Y., Garaga, M., Ghahremani, R., Greenbaum, S., ... Gurkan, B. (2022). Lithium solvation and mobility in ionic liquid electrolytes with asymmetric sulfonyl-cyano anion. Journal of Chemical & Engineering Data, 67 (8), 1810 - 1823.
DOI: 10.1021/acs.jced.2c00294
Shaheen, N., Dean, W., Penley, D., Kersten, B., Rintamaki, J., Vukmirovic, M., ... Akolkar, R. N. (2022). Electro–oxidation of nitroxide radicals: Adsorption–mediated charge transfer probed using SERS and potentiometry. Journal of Electrochemical Society, 169 (5).
DOI: 10.1149/1945-7111/ac7082
Klein, J., Wang, H., Sacci, R., Browning, J., & Gurkan, B. (2022). Smooth modified surfaces of silicon for the study of ionic liquid interfaces by neutron reflectometry. ACS Applied Electronic Materials, 4 (5), 2217-2226.
DOI: 10.1021/acsaelm.1c01351
Ghahremani, R., Savinell, R., & Gurkan, B. (2022). Hydrogen Bonded Concentrated Electrolytes for Redox Flow Batteries: Limitations and Prospects. Journal of Electrochemical Society, 169 (3).
DOI: 10.1149/1945-7111/ac58c6
Spittle, S., Poe, D., Doherty, B., Kolodziej, C., Heroux, L., Haque, M., ... Sangoro, J. (2022). Evolution of Microscopic Heterogeneity and Dynamics Choline Chloride-Based Deep Eutectic Solvents. Nature Communications, 13 (219).
Zhang, Y., Squire, H., Gurkan, B., & Maginn, E. (2022). Refined Classical Force Field for Choline Chloride and Ethylene Glycol Mixtures over Wide Composition Range. Journal of Chemical Engineering Data, 67 (8), 1864-1871.
DOI: 10.1021/acs.jced.1c00841
Lee, Y., & Gurkan, B. (2021). Graphene oxide reinforced facilitated transport membrane with poly (ionic liquid) and ionic liquid carriers for CO2/N2 separation. Journal of Membrane Science, 638 ().
DOI: 10.1016/j.memsci.2021.119652
Gurkan, B., Sun, X., Klemm, A., Kim, Y., Sharada, S., Rodriguez-Katakura, A., ... Kron, K. (2021). Perspective and Challenges in Electrochemical Approaches for Reactive CO2 Separations. iScience, 24 (12).
DOI: 10.1016/j.isci.2021.103422
Penley, D., Vicchio, S., Getman, R., & Gurkan, B. (2021). Energetics of Li+ Coordination with Asymmetric Anions in Ionic Liquids by Density Functional Theory. Frontiers in Energy Research, 9 (570).
DOI: 10.3389/fenrg.2021.725010
Gaur, S., Edgehouse, K., Klemm, A., Wei, P., Gurkan, B., & Pentzer, E. (2021). Capsules with polyurea shells and ionic liquid cores for CO2 capture. Journal of Polymer Science, ().
DOI: 10.1002/pol.20210342
Alfurayi, I., Fraenza, C., Zhang, Y., Pandian, R., Spittle, S., Hansen, B., ... Burda, C. (2021). Solvation Dynamics of Wet Ethaline: Water is the Magic Component. The Journal of Physical Chemistry B, 125 (31), 8888-8901.
DOI: 10.1021/acs.jpcb.1c04629
Dean, W., Klein, J., & Gurkan, B. (2021). Do deep eutectic solvents behave like concentrated electrolytes? A perspective from the electrode-electrolyte interface. Journal of Electrochemical Society, 168 (2).
DOI: 10.1149/1945-7111/abde83
Lee, Y., Penley, D., Dean, W., Klemm, A., & Gurkan, B. (2021). Deep eutectic solvent formed by imidazolium cyanopyrrolide and ethylene glycol for reactive CO2 separations. ACS Sustainable Chemistry & Engineering, 9 (3), 1090-1098.
DOI: 10.1021/acssuschemeng.0c07217
Hansen, B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J., ... Sangoro, J. (2020). Deep Eutectic Solvents: A review of fundamentals and applications. Chemical Reviews, 121 (3), 1232-1285.
DOI: 10.1021/acs.chemrev.0c00385
Gurkan, B. (2020). Facilitated Transport Membranes with Ionic Liquids for CO2 Separations. Frontiers in Chemistry, 8 (637).
DOI: 10.3389/fchem.2020.00637/abstract
Gurkan, B. (2020). From salt in solution to solely ions – solvation of methyl viologen in deep eutectic solvents and ionic liquids. The Journal of Physical Chemistry B, 124 (29), 6348-6857.
DOI: 10.1021/acs.jpcb.0c03296
Chen, B., Mitchell, S., Sinclair, N., Wainright, J. S., Pentzer, E., & Gurkan, B. (2020). Feasibility of TEMPO-functionalized Imidazolium, Ammonium and Pyridinium Salts as Redox-Active Carriers in Ethaline Deep Eutectic Solvent for Energy Storage. Molecular Systems Design and Engineering, (5), 1147-1157.
DOI: 10.1039/D0ME00038H
Zhang, Y., Poe, D., Heroux, L., Squire, H., Doherty, B., Long, Z., ... Maginn, E. (2020). Liquid Structure and Transport Properties of the Deep Eutectic Solvent Ethaline. The Journal of Physical Chemistry B, 124 (25), 5251-5264.
DOI: 10.1021/acs.jpcb.0c04058
Lee, Y., Edgehouse, K., Klemm, A., Mao, H., Pentzer, E., & Gurkan, B. (2020). Capsules of Reactive Ionic Liquids for Selective Capture of Carbon Dioxide at Low Concentrations. ACS Applied Materials & Interfaces, 12 (16), 1918-1919.
DOI: 10.1021/acsami.0c01622
Klein, J., Squire, H., & Gurkan, B. (2019). Electroanalytical Investigation of the Electrode–Electrolyte Interface of Quaternary Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether Functionality. The Journal of Physical Chemistry C, 124 (10), 5613-5623.
DOI: 10.1021/acs.jpcc.9b08016
Gurkan, B., Squire, H., & Pentzer, E. (2019). Metal-Free Deep Eutectic Solvents: Preparation, Characterization, and Considerations. Journal of Physical Chemistry Letters, 10 (24), 7956-7964.
DOI: 10.1021/acs.jpclett.9b01980
Huang, Q., Lee, Y., & Gurkan, B. (2019). Pyrrolidinium Ionic Liquid Electrolyte with TFSI and FSI Anions: Lithium Solvation and Mobility, and Performance in Lithium Metal – Lithium Iron Phosphate . Industrial and Engineering Chemistry Research, 58 (50), 22587-22597.
DOI: 10.1021/acs.iecr.9b03202
Huang, Q., Luo, Q., Wang, Y., Pentzer, E., & Gurkan, B. (2019). Hybrid Ionic Liquid Capsules for Rapid CO2 Capture. Industrial and Engineering Chemistry Research, 58 (24), 10503-10509.
DOI: 10.1021/acs.iecr.9b00314
Gurkan, B., Huang, Q., Lourenco, T., Costa, L., Zhang, Y., & Maginn, E. (2018). Solvation Structure and Dynamics of Li+ in Ternary Ionic Liquid – Lithium Salt Electrolytes. Journal of Physical Chemistry B, 123 (2), 516-527.
DOI: 10.1021/acs.jpcb.8b08859
Xu, N., Klein, J., Huang, P., Alwusaydi, H., Mann, E., & Gurkan, B. (2018). Improved accessibility of porous carbon electrodes with surfactant ionic liquids for supercapacitors. , ().
Klein, J., Panichi, E., & Gurkan, B. (2018). Potential dependent capacitance of [EMIM][TFSI], [N1114][TFSI] and [PYR13][TFSI] ionic liquids. Physical Chemistry Chemical Physics, 21 (7), 3712-3720.
DOI: 10.1039/C8CP04631J
Luo, Q., Wei, P., Huang, Q., Gurkan, B., & Pentzer, E. (2018). Carbon Capsules of Ionic Liquid for Enhanced Performance of Electrochemical Double Layer Capacitors. ACS Applied Materials & Interfaces, 10 (19), 16707-16714.
DOI: 10.1021/acsami.8b01285
Gurkan, B., Qiang, Z., Chen, Y., Zhu, Y., & Vogt, B. (2017). Enhanced Cycle Performance of Quinone-based Anodes for Sodium Ion Batteries by Attachment to Ordered Mesoporous Carbon and Use of Ionic Liquid Electrolyte . Journal of Electrochemical Society, 164 (8), H5093-H5099.
DOI: 10.1149/2.0231708jes
Qiang, Z., Gurkan, B., Ma, J., Liu, X., Guo, Y., Cakmak, M., ... Vogt, B. (2016). Roll-to-roll fabrication of high surface area mesoporous carbon with process-tunable pore texture for optimization of adsorption capacity of bulky organic dyes. Microporous and Mesoporous Materials, 227 (), 57–64.
Brown, P., Gurkan, B., & Hatton, T. (2015). Enhanced gravimetric CO2 capacity and viscosity for ionic liquids with cyanopyrrolide anion. AIChE Journal, ().
Gurkan, B., Simeon, F., & Hatton, T. (2015). Quinone Reduction in Ionic Liquids for Electrochemical CO2 Separation. ACS Sustainable Chemistry & Engineering, 3 (7), 1394–1405.
Gurkan, B. (). . , ().
Gurkan, B. (). . , ().
Gurkan, B. (). . , ().

Job Description

The mission of my research program is to develop new solvents, electrolytes, and materials with unique properties for energy storage and conversion, and separations by developing fundamental understanding of the associated thermodynamics, kinetics, bulk and liquid structure, physical properties, and through innovations in engineered tools. Active research themes include: Fundamentals: ionic liquids, deep eutectic solvents, solvation, transport, electrode-electrolyte interface Applications: energy storage, CO2 capture & conversion, gas separations, sensors, recovery of rare earth elements